
DATE: Day 1 May 2018

SUMMARY of 2017 RESEARCH RESULTS REPORT For International Collaborative Research with IPR, Osaka University

Research Title		STRUCTURAL STUDIES OF MEMBRANE VIRAL CHANNELS USING NMR
Applicant	Name	Jaume TORRES
	Affiliation	School of Biological Sciences
		Nanyang Technological University (Singapore)
	Present Title	Associate Professor
Research Collaborator (Host PI)		Toshimichi FUJIWARA (Professor)

Summary

The envelope (E) and the small hydrophobic (SH) proteins are critical viroporins in the severe acute respiratory syndrome coronavirus (SARS-CoV) and in the human respiratory syncytial virus RSV (hRSV), respectively. Attempts were made to obtain models of the monomers in lipid membranes using solid-state NMR. For SH protein, we attempted to obtain intermolecular NOEs in micelles by solution NMR. Resonances obtained in solid-state NMR were too broad, probably due to sample heterogeneity or inherent intrinsic flexibility. To improve resolution, high affinity antibodies or ligands are required. Experiments to obtain intermolecular NOEs using a mixed pair (15 N-D and 13 C) in a SH pentameric channel were delayed by shifting resonances and the need to re-assign from scratch, and to insufficient D/H exchange in the deuterated sample.

(A) 2D-DARR spectrum of ¹³C¹⁵N SARS-CoV E protein; (B) RSV-SH protein; (C) RSV-SH protein S29A mutant in DMPC membranes, collected in a 600 MHz Jeol NMR spectrometer; (D) ¹⁵N-Trosy-HSQC of SH in d38-DPC micelles collected in a 800 MHz spectrometer [shifted resonances in previously published data (circles)]; (E) resonance shifts between double labeled SH protein and a partially (60%) deuterated sample.