DATE: Day<u>23 Month April</u> Year 2025 SUMMARY of FY2024 RESEARCH RESULTS REPORT For International Collaborative Research with IPR, Osaka University

Research Title		Development of an in-silico design protocol of peptide inhibitors
		for protein-protein interactions
Applicant	Name	Thana Sutthibutpong
	Affiliation	Department of Physics, Faculty of Science, King Mongkut's University
		of Technology Thonburi (KMUTT), Thailand
	Present Title	Associate Professor
Research Collaborator (Host PI)		Kenji Mizuguchi

Summary

Protein-protein interactions (PPIs) are central to biological regulation and disease pathways, yet they remain challenging to target with small molecules due to their large, shallow interaction surfaces. Peptide inhibitors offer a promising alternative by mimicking natural binding motifs. However, the diversity of peptide sequences and structures complicates the rational design of effective inhibitors.

This study presents a novel, structure-based, interpretable machine learning (ML) framework for identifying peptide inhibitors targeting PPIs, with a focus on the SARS-CoV-2 receptor-binding domain (RBD). A random forest classifier was trained using over 6,500 peptide-protein complexes from the BioLip2 database. Key features included amino acid triads extracted from residue interaction networks (RINs), transformed into physicochemical interaction profiles. The resulting model achieved 77.2% accuracy and 98.3% specificity in identifying binding residues.

This high-specificity model was then employed in a virtual screening of over 3,300 antimicrobial peptides from the DRAMP 3.0 database, targeting the RBD of the BA.2.86 SARS-CoV-2 variant. Ten peptides with promising predicted binding residues were selected. Among them, the 9-mer Jellein-2 (TPFKISIHL), derived from honeybee royal jelly, showed the highest binding affinity. Molecular docking confirmed strong interactions at conserved RBD epitopes, and further atomistic molecular dynamics (MD) simulations and MM/GBSA binding energy analyses validated the stability and energetics of Jellein-2's binding, particularly at Class 1, 3, and 5 epitopes.

Feature importance analysis of the ML model revealed that non-polar aliphatic side chains were crucial for effective binding, aligning with the physicochemical profile of Jellein-2. The peptide's alternating hydrophobic–hydrophilic pattern enables it to engage receptor surfaces while maintaining solubility.

This research establishes a generalizable in-silico protocol that integrates machine learning, virtual screening, and molecular modeling for the design of peptide inhibitors. Jellein-2 is proposed as a potential lead for antiviral development, and the protocol is adaptable to other PPI systems beyond SARS-CoV-2.